Data flow level modelling

Data flow modelling is a higher level of abstraction compared to gate
level modelling.

To design a circuit in a data flow level, the designer should be aware of
data flow of the design .

The gate level design description makes use of the gate primitives
available in Verilog. It becomes very complex for a VLSI circuit because
number of gate is very large, hence data flow modelling become a very
important way of implementing the design.

Data flow modelling makes the circuit description more compact as
compared to the design through gate primitives.

Verilog allows a circuit to be designed in terms of the data flow between
registers and how a design processes data rather than the instantiation
of individual gates.

In data flow modelling most of the design is implemented using
continuous assignment, which are used to drive a value onto a net.

Continuous assignment structure

A continuous assignment is the most basic statement in dataflow
modelling, used to drive a value onto a net. This assignment replaces
gates in the description of the circuit and describes the circuit at a
higher level of abstraction.

The assignment statement starts with the keyword ‘assign”.

Continuous assignment can be used in two ways , as the net
declaration statement and as the continuous assignment statement.

The syntax of an assign statement is as follows.

continuous_assign ::= assign [drive_strength] [delay3]
list_of_net_assignments ;

list_of_net_assignments ::= net_assignment {, net_assignment }
net_assignment ::= net_Ivalue = expression

Continuous assignments have the following characteristics:

e The left hand side of an assignment must always be a scalar or
vector net or a concatenation of scalar and vector nets. It cannot
be a scalar or vector register.

e Continuous assignments are always active. The assignment

expression is
evaluated as soon as one of the right-hand-side operands changes
and the value is assigned to the left-hand-side net.

e The operands on the right-hand side can be registers or nets or
function calls.
Registers or nets can be scalars or vectors.

e Continuous assignment cannot be used within initial or always
blocks.

e Delay values can be specified for assignments in terms of time
units. Delay values are used to control the time when a net is
assigned the evaluated value.

Examples of Continuous Assignment

// Continuous assign. out is a net. i1 and i2 are nets.
assignout =i1 &i2;

// Continuous assign for vector nets. addr is a 16-bit vector net
// addr1 and addr2 are 16-bit vector registers.
assign addr[15:0] = addr1_bits[15:0] * addr2_bits[15:0];

// continusous assignment with Concatenation. Left-hand side is a
concatenation of a scalar

// net and a vector net.

assign {c_out, sum[3:0]} = a[3:0] + b[3:0] + c_in;

// delay specification in continuous assignment statement
assign #25 out = i1 & i2;

Implicit continuous assignment

Regular continuous assignment means, the declaration of a net and its
continuous assignment are done in two different statements

but in implicit continuous assignment, assignment can be done on a net
when it is declared itself.

Example

//Regular continuous assignment

wire out;

assignout =in1 &in2;

//Same effect is achieved by an implicit continuous assignment
wire out =in1 & in2;

Implicit Net Declaration

In Verilog during implicit assignment , if L.H.S. is declared then it will
assign the R.H.S. to the declared net.

But if the L.H.S. is not defined it will automatically create a net for the
signal name.

Example

// Continuous assign. out is a net.

wireil,i2;

assign out = i1 & i2; //Note that out was not declared as a wire

//but an implicit wire declaration for out

//is done by the simulator.

Combining assignment and net declaration

The assignment statement can be combined with the net declaration
itself making the assignment implicit in the net declaration itself.

Thus the two statements

Wire c;

Assign ¢ = a&b;

Can be combined as

Wire ¢ = a&b;

Continuous assignment and strength

A net to which the continuous assignment is being made can be
assigned strength for its logic levels.

module aoi4 (g, a, b, c, d);

output g,

input a, b, c, d;

wire (;

wiree =a &&b;

wire f =c & &d;

wire gl=e||f;

assign (pulll, strong0)g =-~g1;
endmodule

Delay and continuous assignment

Delay values control the time between the change in a right-hand-side
operand and when the new value is assigned to the left-hand side.
Three ways of specifying delays in continuous assignment statements
are

e regular assignment delay

e implicit continuous assignment delay

¢ net declaration delay

Regular Assignment Delay
The first method is to assign a delay value in a continuous assignment
statement. The delay value is specified after the keyword assign.

assign #10 out = in1 &in2; // Delay in a continuous assign

Any change in values of in1 or in2 will result in a delay of 10 time units
before recomputation of the expression in1 & in2, and the result will be
assigned to out.

If inT or in2 changes value again before 10 time units , when the result
propagates to out, the values of in1 and in2 at the time of recomputation
are considered. This property is called inertial delay.

An input pulse that is shorter than the delay of the assignment
statement does not propagate to the output.
Figure:

|
I I
I I
I
|
I
I

inl

|
|
|
I I
' |

|
I
|
I

I o
|]
I &
| .
: |

in2
|
out —Ixxxxxl | l
time 10 20 30 60 70 80 85

1. When signals in1 and in2 go high at time 20, out goes to a high 10
time units later
(time = 30).
2. When in1 goes low at 60, out changes to low at 70.
3. However, in1 changes to high at 80, but it goes down to low before 10
time units have elapsed.
Hence, at the time of recomputation, 10 units after time 80, in1 is O.

Thus, out

gets the value 0. A pulse of width less than the specified assignment
delay is not

propagated to the output.

Implicit Continuous Assignment Delay

An implicit continuous assignment is used to specify both a delay and
an assignment on the net.

//implicit continuous assignment delay

wire #10 out =in1 & in2;

//same as

wire out;

assign #10 out =in1 & in2;

The declaration above has the same effect as defining a wire out and
declaring a
continuous assignment on out.

Net Declaration Delay

A delay can be specified on a net when it is declared without putting a
continuous

assignment on the net.

If a delay is specified on a net out, then any value change applied to the
net out is delayed accordingly.

//Net Delays

wire # 10 out;

assignout =in1 &in2;

//The above statement has the same effect as the following.

wire out;

assign #10 out =in1 & in2;

Assignment to vectors
The continuous assignment are equally applicable to vectors
Example:- 8 bit adder

module add_8(a,b,c);
Input[7:0] a,b;
Output [7:0] c;
assign c=a+b;
endmodule

concatenation of vectors

one can concatenate vectors , scalars, and part vectors to form other
vectors. The concatenated vector is enclosed with in braces. Commas
separate the components - vectors, scalars, and part vectors.

Example

{a,b,c}

concatenated vector of 13 bit width if a is 8 bit vector, b is 4 bit vector
and c is scalar.

The vector component formed in order , first is most significant bit i.e.
a[7], last is least significant bit i.e. ¢ and other bit are in between.

The concatenation can also be with selected segment of vectors
Example

{a(7:4), b(2:0)}

7 bit vector formed by combining the 4 most significant bit of vector a
with 3 least significant bit of vector b.

The size of each operand with in the braces has to be specified fully to
form the concatenated vector

A complete 8 bit adder module at data flow level
module add__8 bit (c,co,a,b,ci);

input[7:0] a,b;

input ci;

output[7:0] c;

output co;

assign {co,c} = (a+b+ci);

endmodule

when it is necessary to replicate vector, scalars etc. to form other
vectors, then use repetition multiplier through concatenation.
For example

{2{p}}

It represents the concatenated vector
{p.p}

Concatenation operation can be nested to form a bigger vector when
components combination are repeated.

For example

{a,3{2{b,c},d}}

It is equivalent to

{a,b,c,b,c,d,b,c,b,c,d,b,c,b,c,d}

The two statement

assign GND = supply0;

p = {8{GND}};

it ground the 8 bit of vector p.

operators
et v e g+ g e s sy ssssee)
Operator Type | Operator Symbol | Operation Performed | Number of Operands
* multiply two
! divide two
+ add two
Arithmetic
- subtract two
Yo modulus two
b power (exponent) two
! logical negation one
Logical && logical and two
II logical or two
> greater than two
< less than two
Relational
>= greater than or equal two
<= less than or equal two
== equality two
I= inequality two
Equality
=== case equality two
= case inequality two

~ bitwise negation one

& bitwise and two
Bitwise | bitwise or two

- bitwise xor two

A or ~" bitwise xnor two

& reduction and one

~& reduction nand one

| reduction or one
Reduction

~| reduction nor one

M reduction xor one

A or ~" reduction xnor one

= Right shift Two

< Left shift Two
Shift

> Anthmetic nght shift | Two

e Arithmetic left shuft Two
Concatenation || } Concatenation Any number
Replication {1} Replication Any number
Conditional ¥ & Conditional Three

Arithmetic Operators
There are two types of arithmetic operators: binary and unary.

Binary operators
Binary arithmetic operators are multiply (*), divide (/), add (+), subtract (-),
power (**), and modulus (%). Binary operators take two operands.

example

A =4b0011; B =4'b0100; // A and B are register vectors
D=6;E=4;F=2//D andE are integers

A * B // Multiply A and B. Evaluates to 4b1100

D / E// Divide D by E. Evaluates to 1. Truncates any fractional part.
A+ B // Add A and B. Evaluates to 4b0111

B - A // Subtract A from B. Evaluates to 4'b0001

F =E**F;//E to the power F, yields 16

If any operand bit has a value x, then the result of the entire expression
IS X.

Modulus operators produce the remainder from the division of two
numbers. They operate similarly to the modulus operator in the C
programming language.

Unary operators

The operators + and - can also work as unary operators. They are used
to specify the positive or negative sign of the operand.

Relational Operators

Relational operators are greater-than (>), less-than (<), greater-than-or-
equal-to (>=), and less-than-or-equal-to (<=). If relational operators are
used in an expression, the expression returns a logical value of 1 if the
expression is true and 0 if the expression isfalse.

If there are any unknown or z bits in the operands, the expression takes
a value x.

//A=4,B=3

// X=4Db1010,Y =4b1101, Z = 4'bTxxx
A <= B // Evaluates to a logical 0

A > B // Evaluates to a logical 1

Y >= X // Evaluates to a logical 1

Y < Z // Evaluates to an x

Logical Operators

Logical operators are logical-and (&&), logical-or (||) and logical-not (!).
Operators && and || are binary operators. Operator ! is a unary operator.
Logical operators follow these conditions:

1. Logical operators always evaluate to a 1-bit value, 0 (false), 1 (true), or
X

(ambiguous).

2. If an operand is not equal to zero, it is equivalent to a logical 1 (true

condition). If it is equal to zero, it is equivalent to a logical 0 (false
condition).

If any operand bit is x or z, it is equivalent to x (ambiguous condition)
and is normally treated by simulators as a false condition.

3. Logical operators take variables or expressions as operands.

A && B // Evaluates to 0. Equivalent to (logical-1 && logical-0)
A || B // Evaluates to 1. Equivalent to (logical-1 || logical-0)
IA// Evaluates to 0. Equivalent to not(logical-1)

IB// Evaluates to 1. Equivalent to not(logical-0)

// Unknowns
A =2b0x; B =2b10;
A && B // Evaluates to x. Equivalent to (x && logical 1)

Equality Operators

Equality operators are logical equality (==), logical inequality (!=), case
equality (===), and case inequality ('==). When used in an expression,
equality operators return logical value 1 if true, 0 if false. These
operators compare the two operands bit by bit, with zero filling if the

operands are of unequal length

//A=4,B=3

// X=4'b1010,Y =4b1101

/] Z =4'bTxxz, M = 4'b1xxz, N = 4'b1xxx

A ==B// Results in logical 0

X!=Y // Results in logical 1

X ==27// Results in x

Z === M // Results in logical 1 (all bits match, including x and z)

Z === N // Results in logical 0 (least significant bit does not match)
M !== N // Results in logical 1

Bitwise Operators

Bitwise operators are negation (~), and(&), or (|), xor (%), xnor (*~, ~*).
Bitwise operators perform a bit-by-bit operation on two operands.

They take each bit in one operand and perform the operation with the
corresponding bit in the other operand. If one operand is shorter than the
other, it will be bit-extended with zeros to match the length of the longer
operand.

Truth Tables for Bitwise Operators

bitwise and

bitwise xor

= o oo

0

0

bitwise
negation

bitwise or

bitwise xnor

result

Examples of bitwise operators are shown below.
// X=4b1010,Y =4'b1101

/1 Z =4b10x1

~X // Negation. Result is 4b0101

X &Y // Bitwise and. Result is 4'b1000
X 1Y // Bitwise or. Resultis 4b1111

X 7Y // Bitwise xor. Result is 4b0111

X *~Y // Bitwise xnor. Result is 4b1000
X & Z // Result is 4'b10x0

Reduction Operators

Reduction operators are and (&), nand (~&), or (|), nor (~]), xor (*), and
xnor (~*, A~).

Reduction operators take only one operand. Reduction operators
perform a bitwise operation on a single vector operand and yield a 1-bit

result .

Bitwise operations are on bits from two different operands, whereas

reduction

operations are on the bits of the same operand. Reduction operators

work bit by bit fromright to left.
X=4b1010

&X //Equivalentto 1 & 0 & 1 & 0. Results in 1'b0
|X//Equivalentto 10| 1] 0. Results in 1'b1

0

AX//Equivalentto 120”17 0. Results in 1'b0
//A reduction xor or xnor can be used for even or odd parity
//generation of a vector.

Shift Operators
Shift operators are right shift (>>), left shift (<<), arithmetic right shift
(>>>), and arithmetic left shift (<<<).

X =4'b1100
Y =X>>1;//Yis 4b0110. Shift right 1 bit. O filled in MSB
position.

Y =X <<2;//Y is 4b0000. Shift left 2 bits.

Concatenation Operator

The concatenation operator ({, }) provides a mechanism to append
multiple operands.

The operands must be sized. Unsized operands are not allowed because
the size of each operand must be known for computation of the size of

the result.

// A=1b1,B=2b00,C=2b10,D =3b110

Y ={B, C}//ResultY is 4b0010
Y={A,B,C,D,3b001}//ResultYis 11'b10010110001
Y ={A, B[0], C[1]} // Result Y is 3'b101

Replication Operator

Repetitive concatenation of the same number can be expressed by using
a replication constant. A replication constant specifies how many times
to replicate the number inside the brackets ({}).

example

reg A,

reg [1:0] B, C;

reg [2:0] D;

A=1b1;B=2b00;C=2b10; D =3b110;

Y ={4{A}} // Result Y is 4b1111

Y ={4{A},2{B}}// Result Y is 811110000

Y = {4{A}, 2{B}, C} // Result Y is 8'b1111000010

Conditional Operator

The conditional operator(?:) takes three operands.

Usage: condition_expr ? true_expr : false_expr;

The condition expression (condition_expr) is first evaluated. If the result
is true (logical 1), then the true_expr is evaluated.

If the result is false (logical 0), then the false_expr is evaluated.

If the result is x (ambiguous), then both true_expr and false_expr are
evaluated

and their results are compared, bit by bit, to return for each bit position
an x if the bits are different and the value of the bits if they are the same.

Operator precedence

(perators Operator Symbols | Precedence
Unary t-l~ Highest precedence
Multiply, Divide, Modulus | * /%
Add, Subtract + -
Shitt << >
Relational <E=>2=
Equality =l===I=
&, ~&
Reduction e
L~
&&
Logical
I
Conditional T Lowest precedence
EXAMPLES

4-to-1 Multiplexer

module mux4_to_1 (out, i0, i1, i2, i3, s1, s0);
// Port declarations from the I/0 diagram
output out;
input i0, i1,12,i3;
input s1, sO;
//Logic equation for out
assign out = (~s1 & ~s0 & i0)|

(~s1&s0&i1) |

(s1 & ~s0&i2) |

(s1&s0&i3);
endmodule

4-bit Full Adder

module fulladd4(sum, c_out, a, b, c_in);
// 1/0 port declarations

output [3:0] sum;

output c_out;

input[3:0] a, b;

input c_in;

// Specify the function of a full adder
assign {c_out, sum}=a+b + c_in;
endmodule

4-bit Full Adder with Carry Lookahead

module fulladd4(sum, c_out, a, b, c_in);
// Inputs and outputs
output [3:0] sum;
output c_out;
input [3:0] a,b;
input c_in;
// Internal wires
wire p0,90, p1,91, p2,92, p3,93;
wire c4, c3, c2, c1;
// compute the p for each stage
assign pO0 = a[0] * b[0],
p1 =a[1] * b[1],
p2 = a[2] * b[2],
p3 = a[3] * b[3];
// compute the g for each stage
assign g0 = a[0] & b[0],
g1 =a[1] &b[1],
g2 = a[2] & b[2], g3 = a[3] & b[3];
// compute the carry for each stage
// Note that c_in is equivalent c0 in the arithmetic equation for
// carry lookahead computation
assignc1=g0| (p0 & c_in),
c2=g1|(p1&g0)|(p1&p0 &c_in),
c3=92|(p2&g1)|(p2&p1&g0)|(p2&p1 & p0 &c_in),
c4=93|(p3&9g2)|(p3&p2&g1)|(p3&p2&p1&go)|
(p3 & p2 & p1 & p0 & c_in);
// Compute Sum
assign sum[0] = p0 * c_in,
sum[1] =p1*cl,
sum[2] = p2*c2,
suml[3] = p3 2 c3;
// Assign carry output
assign c_out = c4;
endmodule

Ripple Counter

clear

// Ripple counter

module counter(Q, clock, clear);
//1/0 ports

output [3:0] Q;

input clock, clear;

// Instantiate the T flipflops
T_FF tff0(Q[0], clock, clear);
T_FF tff1(Q[1], Q[0], clear);

T_FF tff2(Q[2], Q[1], clear);

T_FF tff3(Q[3], Q[2], clear);

Endmodule

Ring counter

module rng ctr (cen,clk,sd,rd,q,qgb):
input clk,cen;
input[3:0]sd, rd;

output [3:0]q,gb;

wire [3:0]d;

unishrg uu(clk,d, sd, rd,q,qgb) ;
assign d[l]=(cen)? gq[0]:1'b0;
assign d[2]=(cen)? gq[l]:1'b0;
assign d[3]=(cen)? g[2]:1'b0;
assign d[0]=(cen)? q[3]:1'b0;
endmodule

module tst rng ctr;//test-bench
reg clk,cen;
reg[3:0]sd, rd;
wire [3:0]qg,qgb;
rng_ctr rsh(cen,clk,sd,rd,q,gb);
initial
begin
clk=0;sd=4"'b1000; rd=4"b0111;

#3sd=4'b0000; rd=4"'b0000;
#2cen=1"'bl;

end

always

begin

#2clk =~clk;

end

initial #50 $stop;

endmodule

BCD ADDER

module bed(co,sumd,a,b);

input [3:0]a,b;

output [3:0]sumd;

output co;

wire [3:0)]sumb;

assign sumb = a + b;

assign{co, sumd}=(sumb<=4'b1001) ?{1'b0, sumb} : (sumb+4'b01
10);

endmodule

module tst_bcd;//Test bench
reg [3:0]a,b;

wire co;

wire [3:0]sumd;

bcd beec(co,sumd,a,b);

initial
begin
a=4'h0 ; b = 4'h0;
#2 a = 4'hl ; b = 4"h0;
#2 a = 4'h2 ; b = 4'hl;
#2 a = 4'hd ; b = 4"h5;
#2 a = 4'hée ; b = 4"he;
#2 a = 4'hd ; b = 4'hl;
#2 a = 4'hf ; b = 4"h0;
end

initial $monitor($time,"a = %b, b = %b, co = %b, sumd =
%b",a,b,co,sumd) ;

initial #16 Sstop;

endmodule

